Factors

Conceptually, factors are variables in R which take on a limited number of
different values; such variables are often referred to as categorical variables.
One of the most important uses of factors is in statistical modeling; since
categorical variables enter into statistical models differently than continuous
variables, storing data as factors insures that the modeling functions will treat
such data correctly.

5.1 Using Factors

Factors in R are stored as a vector of integer values with a corresponding set
of character values to use when the factor is displayed. The factor function
is used to create a factor. The only required argument to factor is a vector of
values which will be returned as a vector of factor values. Both numeric and
character variables can be made into factors, but a factor’s levels will always
be character values. You can see the possible levels for a factor by calling the
levels function; the nlevels function will return the number of levels of a
factor.

To change the order in which the levels will be displayed from their default
sorted order, the levels= argument can be given a vector of all the possible
values of the variable in the order you desire. If the ordering should also be
used when performing comparisons, use the optional ordered=TRUE argument.
In this case, the factor is known as an ordered factor.

The levels of a factor are used when displaying the factor’s values. You
can change these levels at the time you create a factor by passing a vector
with the new values through the labels= argument. Note that this actually
changes the internal levels of the factor, and to change the labels of a factor
after it has been created, the assignment form of the levels function is used.
To illustrate this point, consider a factor taking on integer values which we
want to display as roman numerals:

68 5 Factors

> data = ¢(1,2,2,3,1,2,3,3,1,2,3,3,1)
> fdata = factor(data)

> fdata
[11 1223123312331
Levels: 1 2 3
> rdata = factor(data,labels=c("I","II","III"))
> rdata

[1]1 I IT II IIT I IT IIT IIT I II IITI IIT I
Levels: I II III

To convert the default factor fdata to roman numerals, we use the assignment
form of the levels function:

> levels(fdata) = c(’I’,’II’,’III’)
> fdata

[1] I IT II IIT I IT III IIT I II IITI IIT I
Levels: I IT TIIT

Factors represent a very efficient way to store character values, be-
cause each unique character value is stored only once, and the data itself
is stored as a vector of integers. Because of this, read.table will auto-
matically convert character variables to factors unless the as.is=TRUE or
stringsAsFactors=FALSE arguments are specified, or the stringsAsFactors
system option is set to FALSE. See Section 2.2 for details.

As an example of an ordered factor, consider data consisting of the names
of months:

> mons = c("March","April","January","November","January",
+ "September","October","September","November","August",
+ "January","November","November", "February","May","August",
+ "July","December", "August","August","September","November",
+ "February","April")
> mons = factor (mons)
> table(mons)
mons
April August December February January July
2 4 1 2 3 1
March May November October September
1 1 5 1 3

Although the months clearly have an ordering, this is not reflected in the out-
put of the table function. Additionally, comparison operators are not sup-
ported for unordered factors. Creating an ordered factor solves these problems:

> mons = factor(mons,levels=c("January","February","March",

+ "April","May","June","July","August","September",
+ "October","November","December") ,ordered=TRUE)

> mons[1] < mons[2]

[1] TRUE

5.1 Using Factors 69

> table(mons)

mons
January February March April May June
3 2 1 2 1 0
July August September October November December
1 4 3 1 5 1

The order in which the levels are displayed is determined by the order in which
they appear in the levels= argument to factor.

In the previous example, the levels of the factors had a natural ordering.
Sometimes, a factor needs to be reordered on the basis of some property
of that factor. For example, consider the InsectSpray data frame, which
contains data on the numbers of insects seen (count) when an experimental
unit was treated with one of six sprays (spray). The spray variable is stored
as a factor with default ordering:

> levels(InsectSprays$spray)
[1] llAII IIBII ||C|| IlDll IIEII IIF"

Suppose we wish to reorder the factor levels of spray based on the mean
value of the count variable for each level of spray. The reorder function
takes three arguments: a factor, a vector of values on which the reordering is
based, and a function to operate on those values for each factor level. Suppose
we wish to reorder the levels of spray so that they are stored in the order of
the mean value of count for each level of spray:

> InsectSprays$spray = with(InsectSprays,

+ reorder (spray, count,mean))
> levels(InsectSprays$spray)

[1] IICII IIEII IIDII IIAII IIBII IIFII

When reorder is used, it assigns an attribute called scores which contains
the value used for the reordering:

> attr(InsectSprays$spray, ’scores’)
A B C D E F
14.500000 15.333333 2.083333 4.916667 3.500000 16.666667

As always, changes to system datasets are made in the local workspace; the
original dataset is unchanged.

For some statistical procedures, the interpretation of results can be sim-
plified by forcing a particular order to a factor; in particular, it may be useful
to choose a “reference” level, which should be the first level of the factor.
The relevel function allows you to choose a reference level, which will then
be treated as the first level of the factor. For example, to make level “C” of
InsectSprays$spray the first level, we could call relevel as follows:

> levels(InsectSprays$spray)
[1] IIAII IIBII ||Cl| IIDII IIEII IIFII

70 5 Factors

> InsectSprays$spray = relevel(InsectSprays$spray,’C’)
> levels(InsectSprays$spray)
[1] IICII ||A|l IIBII llDlI IIEII llFII

5.2 Numeric Factors

While it may be necessary to convert a numeric variable to a factor for a
particular application, it is often very useful to convert the factor back to its
original numeric values, since even simple arithmetic operations will fail when
using factors. Since the as.numeric function will simply return the internal
integer values of the factor, the conversion must be done using the levels
attribute of the factor, or by first converting the factor to a character value
using as.character.

Suppose we are studying the effects of several levels of a fertilizer on the
growth of a plant. For some analyses, it might be useful to convert the fertilizer
levels to an ordered factor:

> fert = ¢(10,20,20,50,10,20,10,50,20)
> fert = factor(fert,levels=c(10,20,50),ordered=TRUE)
> fert

[1] 10 20 20 50 10 20 10 50 20
Levels: 10 < 20 < 50

If we wished to calculate the mean of the original numeric values of the fert
variable, we would have to convert the values using the levels function or
as.character:

> mean(fert)

[1] NA

Warning message:

argument is not numeric or logical:
returning NA in: mean.default(fert)

> mean(as.numeric(levels(fert) [fert]))

[1] 23.33333

> mean(as.numeric(as.character(fert)))

[1] 23.33333

Either method will achieve the desired result.

5.3 Manipulating Factors

When a factor is first created, all of its levels are stored along with the factor,
and if subsets of the factor are extracted, they will retain all of the original
levels. This can create problems when constructing model matrices and may
or may not be useful when displaying the data using, say, the table function.

5.3 Manipulating Factors 71

As an example, consider a random sample from the letters vector, which is
part of the base R distribution:

> lets = sample(letters,size=100,replace=TRUE)
> lets = factor(lets)
> table(lets[1:5])

abcdefghijklmnopgqrstuvwxyaz
00100001010000000000001100

Even though only five of the levels were actually represented, the table func-
tion shows the frequencies for all of the levels of the original factors. To change
this, we can use the drop=TRUE argument to the subscripting operator. When
used with factors, this argument will remove the unused levels:

> table(lets[1:5,drop=TRUE])
ch jwx
11111

A similar result can be achieved by creating a new factor:

> table(factor(lets[1:5]))
ch jwx
11111

To exclude certain levels from appearing in a factor, the exclude= argu-
ment can be passed to factor. By default, the missing value (NA) is excluded
from factor levels; to create a factor that includes missing values from a nu-
meric variable, use exclude=NULL.

Care must be taken when combining variables which are factors, because
the ¢ function will interpret the factors as integers. To combine factors, they
should first be converted back to their original values (through the levels

function), then catenated and converted to a new factor:

> factl = factor(sample(letters,size=10,replace=TRUE))
> fact2 = factor(sample(letters,size=10,replace=TRUE))
> factl
[1] obivgnquwez
Levels: beinoqvwz
> fact2
[f1 basblrgmzo
Levels: abglmor sz
> factl12 = factor(c(levels(factl) [factl],
levels(fact2) [fact2]))
> factl2
[1l] obivgngwezbasblrgmzo
Levels: abegilmnoqrsvwaz

72 5 Factors
5.4 Creating Factors from Continuous Variables

The cut function is used to convert a numeric variable into a factor. The
breaks= argument to cut is used to describe how ranges of numbers will
be converted to factor values. If a number is provided through the breaks=
argument, the resulting factor will be created by dividing the range of the
variable into that number of equal-length intervals; if a vector of values is
provided, the values in the vector are used to determine the breakpoints.
Note that if a vector of values is provided, the number of levels of the resultant
factor will be one less than the number of values in the vector.

For example, consider the women dataset, which contains height and
weights for a sample of women. If we wanted to create a factor corresponding
to weight, with three equally spaced levels, we could use the following:

> wfact = cut(women$weight,3)

> table(wfact)

wfact

(115,131] (131,148] (148,164]
6 5 4

Notice that the default label for factors produced by cut contains the actual
range of values that were used to divide the variable into factors. The pretty
function can be used to choose cut points that are round numbers, but it may
not return the number of levels that’s actually desired:

> wfact = cut(women$weight,pretty(women$weight,3))
> wfact

[1] (100,120] (100,120] (100,120] (120,140]

[5] (120,140] (120,140] (120,140] (120,140]

[9] (120,140] (140,160] (140,160] (140,160]

[13] (140,160] (140,160] (160,180]
4 Levels: (100,120] (120,140] (140,160] (160,180]
> table(wfact)
wfact
(100,120] (120,140] (140,160] (160,180]

3 6 5 1

The labels= argument to cut allows you to specify the levels of the factors:

> wfact = cut(women$weight,3,labels=c(’Low’,’Medium’,’High’))
> table(wfact)
wfact
Low Medium High
6 5 4

To produce factors based on percentiles of your data (for example, quar-
tiles or deciles), the quantile function can be used to generate the breaks=
argument, insuring nearly equal numbers of observations in each of the levels
of the factor:

5.5 Factors Based on Dates and Times 73

> wfact = cut(women$weight,quantile(women$weight, (0:4)/4))
> table(wfact)
wfact
(115,124] (124,135] (135,148] (148,164]
3 4 3 4

5.5 Factors Based on Dates and Times

As mentioned in Section 4.6, there are a number of ways to create factors
from date/time objects. If you wish to create a factor based on one of the
components of that date, you can extract it with strftime and convert it to
a factor directly. For example, we can use the seq function to create a vector
of dates representing each day of the year:

> everyday = seq(from=as.Date(’2005-1-1"),
+ to=as.Date(’2005-12-317) ,by="day’)

To create a factor based on the month of the year in which each date falls, we
can extract the month name (full or abbreviated) using format:

> cmonth = format(everyday,’%b’)

> months = factor(cmonth,levels=unique (cmonth) ,ordered=TRUE)
> table(months)
months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
31 28 31 30 31 30 31 31 30 31 30 31

Since unique returns unique values in the order they are encountered, the
levels argument will provide the month abbreviations in the correct order
to produce a properly ordered factor.

For more details on formatting dates, see Section 4.3.

Sometimes more flexibility can be achieved by using the cut function,
which understands time units of months, days, weeks, and years through
the breaks= argument. (For date/time values, units of hours, minutes, and
seconds can also be used.) For example, to format the days of the year based
on the week in which they fall, we could use cut as follows:

> wks = cut(everyday,breaks=’week’)

> head (wks)

[1] 2004-12-27 2004-12-27 2005-01-03 2005-01-03
[5] 2005-01-03 2005-01-03

53 Levels: 2004-12-27 2005-01-03 ... 2005-12-26

Note that the first observation had a date earlier than any of the dates in
the everyday vector, since the first date was in middle of the week. By
default, cut starts weeks on Mondays; to use Sundays instead, pass the
start.on.monday=FALSE argument to cut.

74 5 Factors

Multiples of units can also be specified through the breaks= argument. For
example, to create a factor based on the quarter of the year an observation is
in, we could use cut as follows:

> qtrs = cut(everyday,"3 months",labels=paste(’Q’,1:4,sep=""))
> head(qtrs)

[1] Q1 Q1 Q1 Q1 Q1 Q1

Levels: Q1 Q2 Q3 Q4

5.6 Interactions

Sometimes it is useful to treat all combinations of several factors as if they
were a single factor. In situations like these, the interaction function can be
used. This function will take two or more factors, and create a new, unordered
factor whose levels correspond to the combinations of the levels of the input
factors. For example, consider the data frame C02, with factors Plant, Type,
and Treatment. Suppose we wish to create a new factor representing the
interaction of Plant and Type:

> data(C02)

> newfact = interaction(C02$Plant,C02$Type)
> nlevels(newfact)

[1] 24

The factor Plant has 12 levels, and Type has two, resulting in 24 levels in the
new factor. However, some of these combinations never occur in the dataset.
Thus, interaction’s default behavior is to include all possible combinations
of its input factors. To retain only those combinations for which there were
observations, the drop=TRUE argument can be passed to interaction:

> newfactl = interaction(C02$Plant,C02$Type,drop=TRUE)
> nlevels(newfactl)
[1] 12

By default, interaction forms levels for the new factor by joining the levels
of its component factors with a period (.). This can be overridden with the
sep= argument.

